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Cache Indexing and Tagging Variations, Demand Paging 
 

Welcome. In this lecture, we continue our discussion with Virtual Memories. Towards the end 

of the last lecture, we took an example of a practical architecture of Intrinsity FastMATH. We 

will begin today’s lecture by briefly recapitulating that example.  
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So, we said that the Intrinsity FastMATH architecture consists of a 32 bit address space in 

which you have a 20 bit virtual page number and 12 bit of page offset. And this 20 bit of virtual 

page number is goes to the TLB and is matched in parallel to a fully in a fully associative TLB. 

And if there is a tag match corresponding to the virtual page number, you generate a physical 

page number; the physical page number is also 20 bits. That means, the virtual the virtual 

address space and the physical address space has the same size and the page offset goes 

unchanged into the physical address.  

So, we generate the physical page complete physical address here. And, after generating the 

physical address we go for the cache access and we do so, by dividing the physical page address 

935



physical address in to different parts one is the physical address tag the cache index the block 

offset and byte offset. And we said in the last class that we looked at the cache, we looked at a 

split cache in which the tag part and the data part of the cache was divided physically, logically, 

it is one cache, but physically the tag part and the data part is divided and we said why we did 

that. 

So, the physical address tag. So, I use the cache index and to go into the tag part and index the 

tag and when there is a match corresponding to this cache index, I take the tag value, I match 

the tag value with the physical address tag and then I also match with the valid bit and if the 

valid bit is on here, I get a cache hit. So, if the valid bit is on and if the tag matches with the 

physical address tag here and I combine I get a cache hit here.  

And I said that I have I had, we have divided this tag part and the data part because we clubbed 

the index and block offset to generate a 12 bit indexing of this data part of the cache. So, instead 

of a 8 bit indexing of the cache. So, we have a split tag part and a data part and we said that we 

had divided the data part to directly access the word within a cache instead of a block. 

So, when we address this data part where the cache index is appended with the block offset and 

we use this 12 bit in indexing of the data part, I directly go into a word otherwise if we did not 

do so, what we would have what would happen is that we would we would index the data part 

and we go into we would go into a block and then we would require a 16 × 1 MUX to go into 

the particular required word within that block. So, by keeping this tag and data split into 2 parts; 

we can do away with the 16 × 1 MUX. 
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Now, the point for starting with this example again is to reiterate that this was a physically 

indexed physically tagged cache that we were looking into. So, what is a physically indexed 

physically tagged cache? So, in a physically, indexed physically tagged cache the physical 

address translation occurs before cache access. So, first I take the virtual address go into the 

TLB generate the physical address and based on that physical address, I access the cache this 

is what happened with the Intrinsity FastMATH architecture that we just looked.  

The only problem with this architecture is that the TLB comes into the critical path of data 

access. So, suppose even if I have the data in cache, I have to go through the TLB and then 

obtain the physical address and then be able to access the cache, if the page is not present in 

the TLB, if there is a TLB miss, then we have to go to the main memory to fetch the page table 

entry required page table entry and get the physical address.  

So, even if the data is there in cache we may need to go into memory, because the page table 

entry corresponding to this corresponding to this data is not present in the TLB. So, there is, so 

the caches. So, this is the disadvantage of TLB lookup TLB lookup and cache access gets 

serialized and the cache takes greater than one cycle time and it may take multiple cycles, 

because if there is a TLB miss I need to go into the main memory assuming that the page table 

is stored in main memory in this architecture. So, I have to go to the main memory, bring back 

the page table entry fill the TLB bring it to the TLB and then access again get the physical 

address and then go into the cache.  
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So, this happens even if the data is present in the cache; however, the advantage of this scheme 

is that cache contents remain valid. So, long as the page table is not modified, we will be able 

to appreciate this advantage a bit later when we go into seeing how this problem of this TLB 

being within the critical path of data access is solved. 
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So, we try to solve; that means, we try to do away with the we try to take the TLB out of critical 

path by using virtually addressed caches and the first type we will look into is the virtually 

indexed virtually tagged cache. 

So, we look into the virtually indexed virtually tagged cache. So, instead of so what it directly 

from the name we understand, what happens is that instead of using the using a physical tag 

address and a physical indexing of the cache, I use the virtual address to both index and tag the 

cache.  

So, therefore, because I directly use virtual addresses, I break the virtual address again into tag 

part and index part and go into the data and tag part of the cache ok. So, the cache access is 

done you with the virtual addresses in virtually indexed virtually tagged caches the advantage 

is that we don’t need to check TLB on cache hit because I have a process that process generates 

virtual addresses directly based on the virtual addresses, I will go that corresponding to these 

virtual addresses; address do I have the data corresponding to this virtual address. 
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So, the page the physical address could be anything, but that has been brought into the cache 

because that has been brought into the cache. Now, it is stored corresponding to the virtual 

address that data. So, I directly understand that corresponding to this process corresponding to 

the virtual address generated by this process is does the cache content my required data or not, 

I don’t need to go to the TLB I don’t need to I don’t need to go to the TLB to address to get the 

physical address. 

However on a cache miss I need to do that, on a cache miss I need to translate the virtual 

address to physical address by going through the TLB if there is a TLB means going to the 

memory bringing back the page table entry and then fetching the cache block from memory 

because on a cache miss, what I have to do there is there is no there is if when there is a cache 

miss the data I required is not in cache. So, I have to go to physical memory and bring back the 

data to cache. So, how do I do that for that I need to know the physical address of this data how 

do I do that? I the only way is to go to the TLB get to the page table entry get the physical 

address and then go to memory bring back the data and put into the appropriate entry in cache 

such that the virtual address next time can be able to access the data that I need.  

The disadvantage of this scheme there are there are a few disadvantages the first big 

disadvantage is that the cache must be flushed on process context switch. So, remember that 

each process has the same virtual address space. So, it is very common that the same set of 

virtual addresses will be generated for each process and the virtual addresses of different 

processes may be meaning different things, it is local to the process virtual addresses are local 

to the process.  

So, therefore, when there is a context switch, I cannot keep the cache contents anymore, I have 

to flush the cache and I have to flush everything that was there in the cache; so right. And 

therefore, when the new process comes in, again, I will have a set of compulsory misses, I need 

to I will incur a set of compulsory cache misses always, right. So, this is the first disadvantage 

that the cache needs to be flushed at every context which when I use virtually indexed virtually 

tagged caches. 

The second problem is that of synonym or aliasing, it is called the synonym problem or the 

aliasing problem. The problem is that multiple virtual addresses can now map to the same 

physical address. So, the same physical address can be present in multiple locations in the 

cache. So, the same physical address because what has happened is that suppose there are 2 
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virtual addresses of the same process of the same process, I have 2 virtual addresses which 

point to the same physical memory location. 

Why can how can that happen that 2 virtual addresses can point to the 2 virtual addresses can 

point to the same physical memory location because can share same physical page frame within 

or across processes, reasons we have we saw we have shared libraries, share data, copy on write 

pages. So, in case of a for example, let us say I have a shared printf function which is called 

from different portions of the process. 

So, instead of keeping different versions of that same printf function copy the same printf 

function, whenever I need, I can keep in physical memory one version of the printf function, 

the code of the printf function and then I can call I can have stubs within the virtual memory 

which will call the same printf function from physical memory, if it did not have this; what 

would what would I have to do? I will have to keep several versions of the printf function. So, 

whenever it is called whenever I when whenever my process prints something, I need to keep 

the code of the printf.  

Now, now it is better to share this code of printf and keep it in one place. So, what does this 

sharing mean? This sharing means that different virtual addresses will now map to the same 

printf function which is the same set of physical locations in the physical memory. Therefore, 

multiple virtual addresses will point to the same physical address in this case and because I 

have a virtually addressed cache this same data the same. So, therefore, I will what I will have 

is that the same data or the same code will be there will be accessed from multiple virtual 

addresses. 

So, therefore, the same physical address can be present in multiple locations in the cache. So, 

data corresponding to the rather, we can we can say it more precisely that data corresponding 

to the same physical address can be present in multiple locations in the cache now this may 

lead to potential inconsistency because it actually means the same physical location in the 

physical memory suppose one virtual memory writes in writes in to their data and the other one 

reads it. 

Now, I have 2 copies of the data in cache; both meaning the same physical memory location, 

yes, both meaning the same physical memory location, I have 2 data elements and these 2 data 

elements are mapped by different virtual addresses. So, therefore, in a virtually addressed cache 

they will be stored twice in different locations in the cache, and because I have the same 
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physical data element in two points, in 2 places within the cache, this may lead to potential data 

inconsistencies. So, this may lead to potential data inconsistency.  

So, these are the 2 major problems with virtual indexed virtually tagged caches. So, it tries to 

solve the problem of bringing or of taking out TLB from the critical path of a data access this 

is why this was the motivation of bringing in virtually addressed caches, but it introduced 2 

new problems. The first one was that of was that the cache needs to be flushed at every context 

switch. And that may lead to potential latencies due to cache misses of a later process which 

could possibly have been potentially some of these cache misses can be avoided if I did not 

have to flush the cache and the second of the second problem was that of synonym or aliasing 

which meant that the same physical location can the data corresponding to the same physical 

location can be present in multiple locations in the cache being pointed to by different virtual 

addresses and this may lead to inconsistency of data.  

(Refer Slide Time: 16:01) 

 

Now, to handle these problems; so, to handle these problems while keeping the advantage, 

people looked into virtually indexed physically tagged caches. So, in this what happens? Both 

the in the index both cache and TLB concurrently using virtual address bits. So, what happened 

in previously was that previously what happened was that I used the virtual address and using 

the virtual I broke the virtual address and then for the tag and data, I used the virtual address 

for both the tag and the indexing of the cache.  
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Now, here what happens? I will I will do the indexing of the cache principally using the offset 

part of this virtual address ok. So, this part of the virtual address will be used for indexing the 

cache. So, it is virtually indexed because I use the virtual address to index the cache this is 

virtual, this is virtual indexing.  

Now, in parallel when I am indexing the cache at the same time I take the virtual page number 

go into the TLB and get the page number physical page number, if there is a page hit, I go to 

get the physical page number, otherwise, I need to go to the main memory, but if there is a page 

hit say, then I get immediately get the page number and therefore, I can match with the tag that 

is the tag that is available here and understand if there is a cache hit. 

So, essentially there is no latency involved I am still. So, I am still having the advantage that I 

had with virtually indexed and virtually tagged caches why because this TLB access and the 

cache access this cache indexing and the TLB indexing is happening in parallel concurrently 

in hardware. And therefore, if there is a TLB miss, I just index the cache get the data and to 

check whether this cache this was a cache hit subsequent. So, after this indexing is done I just 

check the page number obtained from TLB does it match with the tag part of the cache if there 

if it is. So, I get a cache hit. 

So, so, both; so, I index both the cache and the TLB concurrently using virtual address bits and 

then check the tag physical cache tag against TLB output at the end here, the advantage is that 

I have reduced latency with respect to physically indexed physically tagged caches, because I 

don’t generate the whole page number. And then a subsequent to generating the entire page 

address, I access the cache, I don’t do that. 

I am doing this in parallel and we don’t need to flush the cache on a context switch why is it. 

So, I don’t need to flush the cache on a context switch because the page offset the page offset 

corresponding to the page offset corresponding to the virtual address remains unchanged in the 

physical address and therefore, there the problem of synonym if this is the case here, what the 

case has the case for the case here; I have no problem of synonym either.  
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So, now what has happened the first scenario what we actually looked at in the last slide where 

I had completely been able to avoid the problem of synonym was this case was this case. Now 

elaborate this case one this case. So, this case can happen only if the entire cache can be indexed 

by only using the page offset bits of the virtual address. So, if the cache can be fully indexed 

by only using the page offset part of the virtual address, I have no problem of synonym as we 

will discuss in detail.  

Now, when does this happen; when the cache size is less than the page size into associativity. 

So, when the cache size is at most page size into associativity, then I can use only these bits 

why because page size tells me; how many bits I use for the offset, let us say, I have I have a 

page size of 8 kb, then I use 13 bits for indexing the page I have 13 bits for this one, this part 

has 13 bits, 13 bits. And then let us say, it is a 4 way set associative cache, if it is a 4 way set 

associative cache, then the size of the cache is. So, I have 4 × 8 KB is the size of the cache ok. 

So now, what happens these this associate this 4 way set associative means that I will go to the 

particular I only need to identify the set in the cache, using these 13 bits I will be able to find 

the set in the cache and all the 4 sets all the 4 blocks within this set will be searched in parallel 

to find a cache hit. So, therefore, if the cache size is less than page size in through into 

associativity, I can only use this page offset part of the virtual address to index the cache. And 

I do not have any problem of synonym in this case, why because this page offset part the cache 
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index will come only from the page offset and this page offset is same both in the virtual address 

and the physical address.  

Now, why is this not a problem because now the page offset will tell me which set in the cache 

I need to go find and then the virtual page number I will go to the TLB, I will get the physical 

page number and then based on the page offset I have indexed the cache. So, the page offset 

plus physical page number then tells me my data. 

So, it is as if it is very similar to the physically indexed physically tagged cache in its operation 

because in the I have I cannot have a case in which the same physical memory location can 

exist in two location multiple locations in the cache why, because this page offset part of the 

physical memory tells me where in the cache I will have. And from that cache I will just take 

check for the tag and this check for the tag will be based on page number and I will get a cache 

hit. 

Now, this problem is solved only therefore, for small caches. So, if the I can so, because I only 

have these 13 bits essentially to address the cache to index the cache in this case the number of 

page offset bits, I can only use to address the cache either I have to increase page sizes or I 

have to keep the cache very small now both has limits. 
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So, therefore, sometimes what happens in the so, in practice, what happens is that I have to 

have a cache who size whose size is such that it cannot be indexed solely by the bits in the page 
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offset part, I cannot use only this to access the entire cache. So, I have to borrow a few of the 

page virtual page number bits as well and here in again comes a bit of a problem.  

So, when the cache size is greater than page size into associativity when the cache size is greater 

than page size into associativity, then only these offset page offset bits cannot is not sufficient 

to index the cache the cache index bits must include bits from the virtual page number. So, this 

part, now here I can have, I will again have the problem of synonyms which I had for virtually 

indexed virtually tagged caches. So, therefore, the same physical address can now exist. Again 

this problem has come back the same physical address can exist in multiple locations in the 

cache. 
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Now, how do people try to solve this problem of synonyms? Now the first way as we told is 

that you limit cache size to page size times associativity you do this we already discussed this. 

So, how do you do that? So, then you get the index only from the page offset part have a bigger 

page size or small caches, what is the second solution approach on a right search all possible 

indices that can contain the same physical block and update / invalidate ok. So, what am I doing 

in this case let us say I have 𝑎 bits. So, what are the different sets in cache in into which the 

same physical address can belong the same physical address can belong in at most 2𝑎 different 

sets ok. 

For example, let us say 𝑎 = 2 bits so; that means, so; that means, that to index the cache I have 

used parts of the page offset for this part for this part the physical address and the virtual address 
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is same, I have no problem for these 2 bits, this a part is 2 bits, this these 2 bits, I can have 4 

different sets in which the same physical address can reside I can have 22 equals to 4 different 

places in which this a particular physical page can then reside. 

So, now, for all these 4 locations for all these 4 sets I have to check. So, on a write on a write 

what happens we have to search all possible indices that can contain the same physical block 

on I want to write some data into the cache and then what happens during this, I have to search 

all possible places to retain consistency so that the same physical address is not present in 

multiple locations in the cache, I have to check in all possible positions in the cache where this 

data can reside. So, I have to check all the 4 different sets in which this particular in which this 

particular data can reside and this technique is used in architectures such as alpha and MIPS; 

this architecture R10 K. 

The third strategy is by restricting the virtual page to physical page frame mapping in the 

operating system ok. So, here I am restricting the placement of physical page frames into the 

cache, what do I want to ensure that I will derive the same set in the cache by indexing the 

virtual address as I would do by indexing the physical address this is what I want to ensure and 

this is done through a mechanism called page coloring.  

So, in this scheme, I statically colored the physical I statically color all physical page frames 

ok into using different colors. So, what will be the number of colors the number of colors will 

be at least equals to this 2𝑎 so; that means, if I have 2 bits here I will statically color the physical 

page frames in physical memory with 4 different colors. So, of a set of page frames will be in 

red, the say another set of page frames will be black, another set of page frames will be blue, 

another set of page frames will be yellow. So, I will use 4 different types of colors 

corresponding to each page frame. So, if the page frames in physical memory will be separated 

into 4 sets and each set will get a different color ok. 

Then a physical page of one color so, after coloring is done a physical page of one color is 

mapped to a virtual address by the OS in such a way that a set in cache always gets page frames 

of the same color. So, a physical page of one color so, I have already statically colored; I have 

already statically colored the page frames ok. Now a physical page of one color is mapped by 

the virtual address map to a virtual address. So, what will happen? The OS will allocate physical 

pages to virtual addresses. So, when I need physical addresses. 
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So, now, it will restrict the OS will restrict which virtual addresses can get which physical 

pages which virtual page numbers can get which physical page numbers there will be a 

restriction on that. What will be the restriction? it will map such physical it will map physical 

page frames to virtual pages in such a way that a set in cache always gets page frames of the 

same color that a set in cache always gets page frames of the same color.  

So, my vert suppose, these 2 bits of these a bits I can have what I these 2 bits can be can be 00, 

01, 10 and 11. So, I have 4 colors one color is 00 other is 01, 10 and 11. So, what will happen 

it will, if this virtual address is 00 I will only I will only allow I will only allow. So, if a virtual 

address or virtual page number or virtual address has this particular bits 00, I will only allow 

pages with color 00, let us say 00 is red, I will only allow pages of colors 00 to be mapped to 

this virtual address, by this I will be able to ensure that corresponding to this virtual address 

the physical address the physical addresses will always be mapped to the same set ok, this is 

what is the concept of page coloring. 

So, a physical page of one color is mapped to a virtual address the physical page of one color 

is mapped to a virtual address by the OS in such a way that a set in cache always gets page 

frames of the same color though. So, a set in cache will always get page frames of the same 

color. So, this is how I avoid the problem of synonyms in virtually indexed physically tagged 

caches and it is used in many SPARC processors as well.  
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So, before proceeding further we will take an example with virtually indexed physically tagged 

caches. So, I have a computer which uses 46 bit virtual addresses, it uses 32 bit physical 

addresses and an 8 KB and 8 KB pages. So, page size is 8 KB, physical address space is 32 bit, 

virtual address space is 46 bit and the processor used in the computer has a 1 MB 16 way set 

associative virtually indexed physically tagged cache. So, I have a VIPT cache, 1 MB is the 

size of the cache and it is 16 way set associative and the cache block size is 64 bytes ok.  

So, the question is; what is the minimum number of page colors that will be needed to guarantee 

that no 2 synonyms map to different sets in the processor cache of this computer. So, how do I 

determine this? Firstly, what is the minimum number of page colors required the minimum 

number of page colored bits is given by the (#set index bits) + (#block offset bits) – (#page 

offset bits). So, set index bits is what I the number of sets in the cache. So, the number of sets 

the number of bits required to index a set in the cache is will be the number of hash set index 

bits or the number of set index bits that will be required for a cache is the number of bits that 

will be required to identify an individual set in the cache.  

Block offset bits are what? the number of blocks in each set and then these together when added 

has to be subtracted from the page offset bits because page offset bits tell me the this part which 

is not varying the page offset bits is constant. This is same for the virtual address and the 

physical address. So, that does not vary, the remaining bits vary and those bits must be used to 

obtain the number of colors.  

So, this ensures minimum number of colors these colors ensure that no synonym maps to 

different sets in cache. So, no synonyms map to different sets in cache ok. So, what was a 

synonym the synonym the synonym meant that I have 2 virtual addresses pointing to the same 

physical address and because the virtual addresses are different and this VIPT spurs partially 

virtually addressed cache. So, therefore, potentially this can happen that these 2 virtual 

addresses will map to different locations in the cache. And therefore, the same physical page 

the same physical data same data in physical memory can reside in 2 different locations in the 

cache, because of this mapping because of these bits because of these bits present in the address. 

Now, by coloring I ensure that a physical page of one color will only go to a particular set in 

cache. So, if my page physical page frame is red I know that it has to be if the virtual address 

will always map it in such a way that it gets to that that set always gets the same page color. 
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So, then what happens the number of cache sets, how do I determine the number of cache sets? 

I have the total cache size is 1 MB and I have 64 I have a 64 byte. 

So, a cache block is 64 bytes; so, 64 bytes in a block. So, block offset is 64 bytes 64 bytes and 

the number of blocks in each set the number of blocks in each set is 16, I have a 16 way set 

associative cache. So, 16 way set associative cache. So, the number of blocks in each set is 16 

and therefore, one MB is 220; 64 is 26 and 24. This is the number of blocks in each set. And 

therefore, the number of sets in the cache is 210. 

Therefore, I require 10 bits for set index bits. So, set index bits is 10 and block offset bits as 

we saw here block offset number of blocks in the in a in a set number of number of bytes in a 

block is the block offset, sorry, sorry, the number of bytes in a block is the block offset. So, the 

block offset bit is 6.  
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So, now then what happens is that um. So, now, so, this plus this plus this is 10 + 6 = 16. Now 

I have 8 KB pages. So, number of page offset bits is 13.  
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And so, number of page colored bits that will be required is 10 + 6 - 13 is 3. Hence, we need a 

minimum of 23 because I have 3 bits. So, the page offset is 13 bits, but I am using 16 bits to 

access the index the cache. And therefore, these 3 bits bring in the problem of synonyms. And 

therefore, I colored my page frames of my physical memory into 8 different colors such that 

when I map a page of the same color, I will map the virtual address to physical address will be 

mapped in such a way that a set in cache always gets pages of the same color. 
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